

The 5th Korea-Japan Joint Symposium on Plant Pathology

March 24-26 2025, Sunport Takamatsu, Kagawa, Japan

The Phytopathological Society of Japan The Korean Society of Plant Pathology

The 5th Korea-Japan Joint Symposium on Plant Pathology

🚳 🕋 24th-26th March, 2025 🏻 Takamatsu, Kagawa, JAPAN

The Phytopathological Society of Japan The Korean Society of Plant Pathology

Program of the Symposium

March 24 (Monday), 2025

14:00-17:00 Registration (Grand Foyer of Grand Hall on 3rd floor of Hall Building)

March 25 (Tuesday), 2025

9:00-10:00 Registration (Grand Foyer of Grand Hall)

10:00-10:30 OPENING CEREMONY (Grand Hall)

Welcoming Remarks

Kazuyuki Hiratsuka (Yokohama National University) Former PSJ President

Congratulatory Remarks

Yong-Hwan Lee (Seoul National University) ISPP President

Opening Remarks

Seon-Woo Lee (Dong-A University) Former KSPP President

Opening Address

Hideki Takahashi (Tohoku University) Vice PSJ President

10:30-11:50 PLENARY LECTURES (Grand Hall)

Chair: Sung-Hwan Yun (Soonchunhyang University)

10:30-11:10 Yasuyuki Kubo (Setsunan University)

From Plant Pathogenesis to Human Disease Therapy: *Colletotrichum orbiculare* as a Model for Niemann-Pick Type C.

Chair: Kazuyuki Hiratsuka (Yokohama National University)

11:10~11:50 Kook-Hyung Kim (Seoul National University)

Identification and characterization of soybean genes associated with resistance to the soybean mosaic virus

11:50~13:30 LUNCH

13:30~16:10 SYMPOSIUM CONCURRENT SESSIONS

Session 1: Emerging New Diseases (Grand Hall)

Chair: Takashi Fujikawa (National Agriculture and Food Research Organization) and Hyong Woo Choi (Gyeongguk National University)

13:30~13:50	Kwang-Hyung Kim (Seoul National University, Korea)		
	Understanding the eco-environmental factors affecting the occurrence of		
	Fusarium head blight and their relevance to climate change in Korea		
13:50~14:10	Masako Tujimoto Noguchi (National Agriculture and Food Research		
	Organization, Japan):		
	The occurrence and control of sweet potato foot rot caused by Diaporthe		
	destruens in Japan		
14:10~14:30	Eui-Joon Kil (Gyeongguk National University, Korea)		
	Emerging Plant Viruses in Korea: Expanding Diversity and New Threats		
14:30~14:50	Namiko Kirino (Okayama Prefectural Technology Center for Agriculture,		
	Forestry and Fisheries, Japan)		
	Efforts to elucidate the causes of peach bacterial canker caused by Dickeya		
	dadantii		

Session 2: New Control Measures: Both Chemical and Biological (Grand Hall)

Chair: Masafumi Shimizu (Gifu University) and Young-Ryun Chung (Gyeongsang National University; JGreen INC.)

14:50~15:10	Akira Kawaguchi (National Agriculture and Food Research Organization		
	Japan)		
	Biological control for grapevine crown gall using the nonpathogenic		
	Allorhizobium vitis strains		
15:10~15:30	Hyunkyu Sang (Chonnam National University, Korea)		
	Fungicide resistance and management of Botrytis cinerea from strawberry		
15:30~15:50	Yuichiro Iida (Setsunan University, Japan)		
	Mycoparasite-pathogen-plant: A tripartite interaction in the biocontrol of		
	tomato leaf mold		

15:50~16:10 Kihyuck Choi (Dong-A University, Korea)

Identification of keystone taxa from tomato seed endophytic communities and ecological role analysis in protective synthetic community construction

Session 3: Molecular Mechanisms of Pathogenicity (Small Hall 2 on 5th floor)

Chair: Kenro Ohshima (Hosei University) and

Kwang-Hyung Kim (Seoul National University)

13:30~13:50	Chang-Sik Oh (Seoul National University, Korea) Plasmid-borne virulence genes of Gram-positive <i>Clavibacter</i> species to determine disease development in host plants
13:50~14:10	Kensaku Maejima (The University of Tokyo, Japan) Exploring phyllody: how a tiny effector can manipulate giant plant flowers
14:10~14:30	Junhyun Jeon (Yeungnam University; Seoul National University, Korea) Genetic and transcriptomic analysis of hyphal constriction with a novel assay system in the rice blast fungus
14:30~14:50	Soichiro Asuke (Kobe University, Japan) Molecular mechanisms of the host specificity of the blast fungus at the plant genus level

Session 4: Molecular Mechanisms of Resistance (Small Hall 2)

Chair: Yoshitaka Takano (Kyoto University) and

Doil Choi (Seoul National University)

	Don Choi (Seoui National University)	
14:50~15:10	Yoji Kawano (Okayama University, Japan)	
	An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes	
	Pit1 localization and function	
15:10~15:30	Hangil Kim (Kangwon National University, Korea)	
	RNA silencing suppressors: A driving force in the evolution of plant viruses	
15:30~15:50	Kazuhiro Ishibashi (National Agriculture and Food Research Organization,	
	Japan)	
	Genome engineering toward making virus-resistant plants	
	RNA silencing suppressors: A driving force in the evolution of plant viru Kazuhiro Ishibashi (National Agriculture and Food Research Organizati Japan)	

15:50~16:10 Eui Hwan Chung (Korea University, Korea) Natural compound-mediated plant immune-priming

16:10~16:30 BREAK

16:30~18:30 POSTER SESSION (Exhibition Hall on 1st floor)

Chair: Yoshitaka Takano (Kyoto University) and

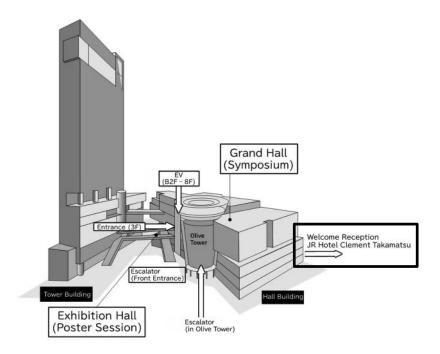
Hyong Woo Choi (Gyeongguk National University)

Information of respective poster sessions

Session I: Emerging New Diseases

Session II: New Control Measures: Both Chemical and Biological

Session III: Molecular Mechanisms of Pathogenicity Session IV: Molecular Mechanisms of Resistance


Session V: Others

March 26 (Wednesday), 2025

9:00~12:00 POSTER PRESENTATION

18:30~21:00 RECEPTION BANQUET and AWARD CEREMONY

Reception Banquet and Award Ceremony are planned for all participants at **JR Hotel Clement Takamatsu** (https://www.jrclement.co.jp/takamatsu/en/). The participation fee is 9,000 Japanese Yen and includes light meal and drinks. Other details will be announced at the registration desk on site.

	Poster Sessions

POSTER INDEX

I: Emerging New Diseases

II: New Control Measures: Both Chemical and Biological

III: Molecular Mechanisms of Pathogenicity

IV: Molecular Mechanisms of Resistance

V: Others

I: Emerging New Diseases

P1-1

First report of rust on hazelnut (Corylus heterophylla) caused by Pucciniastrum coryli in South Korea

A Yeong Heo1, Ki Hyeong Park1, Sang-Tae Seo1

1 National Institute of Forest Science

P1-2

Forest diseases related with the ophiostomatoid fungi in South Korea

Dong-Hyeon Lee¹, Sang-Tae Seo², Yong-Ho Kim¹, Hee-Gyu Woo¹, Sung-Eun Cho³

¹ Department of Environment and Forest Resources, Chungnam National University; ² Division of Forest Entomology and Pathology, National Institute of Forest Science, ³ Institute of Agriculture and Life Science, Gyeongsang National University

P1-3

Isolation, morphological, and molecular characterization of *Ceratobasidium* sp. associated with the Cassava witches' broom disease

Darwin Landicho^{1,2}, Ray Jerome Montanez³, Marita Pinili³, Ikuo Sato⁴, Daigo Takemoto⁴, Sotaro Chiba^{2,4}

¹ Central Laboratory, National Plant Quarantine Services Division, Bureau of Plant Indstry; ² Nagoya University Asian Satellite Campuses Institute – Philippine Campus, University of the Philippines Los Baños; ³ National Crop Protection Center, College of Agriculture and Food Science, University of the Philippines Los Baños; ⁴ Graduate School of Bioagricultural Sciences, Nagoya University

P1-4

Sigatoka-like disease caused by Fusarium spp. in the Philippines

Yui Harada¹, Yoshiki Takata², Mike Andre Malonzo², Shunsuke Nozawa², Kyoko Watanabe^{1,2}

Graduate School of Agriculture, Tamagawa University; College of Agriculture, Tamagawa University

P1-5

Pathogenicity of *Pythium myriotylum* from asymptomatic-hydroponically-grown lettuce on spinach and lettuce seedlings

Takafumi Umei¹, Tomoko Shinozaki², Motoaki Tojo^{1,2}

¹ Graduate School of Agriculture, Osaka Metropolitan University; ² Graduate School of Life and Environmental Sciences, Osaka Prefecture University

P1-6

Association of Globisporangium species as causal agents of cavity spot of carrot in Japan

Keisuke Katsura¹, Motoaki Tojo¹

¹ Grad. Sch. Osaka Metro. Univ.

P1-7

Characterizations of Globisporangium ultimum var. ultimum from cucumber in Japan on its species identity and pathogenicity

Sophaneth Keo¹, Ruka Kawasumi¹, Motoaki Tojo¹

¹ Graduate School of Agriculture, Osaka Metropolitan University

P1-8

Morphological and molecular identification of *Globisporangium iwayamae* from wheat with browning root rot in Hokkaido, Japan

Nanako Saga¹, Kennichi Mino², Seiji Shimoda³, Tamotsu Hoshino⁴, Naoyuki Matsumoto⁵, Motoaki Tojo¹

¹ Graduate School of Agriculture, Osaka Metropolitan University; ² Hokkaido Research Organization, Agricultural Research Department, Central Agricultural Experiment Station; ³ NARO Hokkaido Agricultural Research Center; ⁴ Faculty of Engineering, Hachinohe Institute of Technology; ⁵ None

P1-9

Damping off caused by *Aphanomyces cochlioides* in hydroponically-grown quinoa and soil-grown sugar beet **Ruka Kawasumi**¹, Keisuke Katsura¹, Megumi Nagahama², Motoaki Tojo¹

Grad. Sch. Agri. Osaka Metro. Univ; 2 Kamikawa Agri. Exp. Sta.

P1-10

A next-generation-sequencing and visual assessment based diagnosis of sweet potato virus diseases

Miki Aoyama¹, Riku Ogura^{1,2}, Minoru Takeshita¹

¹ Fac. Agri. Univ. Miyazaki; ² Kagoshima Pref.

P1-11

Altitude-Dependent Occurrence of Polerovirus TUYV (BrVV) in Kimchi Cabbage Fields in Korea

Hee-Seong Byun¹, Bong-Choon Lee¹. Hae-Ryun Kwak¹, Young-Gyu Lee²

¹ National Institute of Agricultural Sciences (RDA); ² National Institute of Crop Science (RDA)

II: New Control Measures: Both Chemical and Biological

P2-1

Field fitness and competitive ability of pyraclostrobin-resistant *Colletotrichum viniferum* causing grape anthracnose Taejun Yun¹, Minseok Kim¹, Seoyeon Lee¹, Heungtae Kim¹

Chungbuk National University

P2-2

Fungicide response of Sclerotinia nivalis and Botrytis cienrea isolated from sclerotia of diseased ginseng Eunchong Jeong¹, Yunyeong Kang¹, Sinbi Hwang¹, Heungtae Kim¹

¹ Chungbuk National University

P2-3

Benomyl resistance of Passalora fulva causing tomato leaf mold

Yunyeong Kang1, Heungtae Kim1

1 Chungbuk National University

P2-4

Evaluation of the Control Efficacy of Clubroot Disease in Chinese Cabbage Using Comprehensive Eco-Friendly Control Techniques

Shim Chang-Ki¹, Kim Min-Jeong², Han Min-Young², Nam Joo-Hee³, Shin Joonh-Doo⁴, Kim Ae-Jin¹, Lee Chang-Muk¹

¹ Technology Services Division, National Institute of Agricultural Sciences; ² Organic Agricultural Division, National Institute of Agricultural Sciences; ³ Environment-Friendly Microorganism Research Institute, Gyeonggi-Do Agricultural Research and Extension Service; ⁴ Bio-technology of Multidisciplinary Sciences, Co., JBTP R&D Center

P2-5

2'-deoxyuridine (dU), a self-infection promoting factor of rice blast fungus, and biological control using dU-degrading bacteria

Haowei Hu¹, Hiroka Maeshima¹, Rikuto Tsukahara¹, Sotaro Chiba¹, Daigo Takemoto¹, Ikuo Sato¹ Grad. Sch. Bioagr. Sci., Nagoya Univ.

P2-6

Biocontrol Potential of Trichoderma asperellum CMML20-29 Against Sweet Potato Diseases

Soyoon Park¹, Ju Gyeong Lee¹, Gui Hwan Han², Hyunkyu Sang^{1,3}

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University; ² Center for Industrialization of Agricultural and Livestock Microorganisms; ³ Kumho Life Science Laboratory, Chonnam National University

P2-7

Biological Control of Sweet Potato Fusarium Wilt and Black Rot Using Bacillus velezensis CMML21-49

Ju Gyeong Lee¹, Yoeng-Seok Yoon^{2,3}, Gui Hwan Han², Hyunkyu Sang¹

¹ Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University; ² Center for Industrialization of Agricultural and Livestock Microorganisms; ³ Food Safety and Processing Research Division, National Institute of Fisheries Science

P2-8

Assessment of disease suppressiveness against Fusarium wilt disease using organic hydroponics with the MPM system

Yudai Sasada¹, Takumi Masuda¹, Masaaki Masumoto², Tomomi Sano³, Haibo Xu³, Ryoya Nishida³, Kazuki Fujiwara¹

¹ Faculty of Agriculture, Meijo University; ² Kumamoto Prefecture Agriculture Research Center; ³ TOWING Ltd.

P2-9

Metagenomic analysis of microbes involved in banana fusarium wilt-suppressive soil in Huánuco, Perú

Carla Trigoso Hidalgo¹, Liliana Aragon Caballero², Koji Tobata¹, Takeshi Kashiwa³, Ken Komatsu¹, Motoichiro Kodama⁴, Tsutomu Arie¹

¹ United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT); ² National Agrarian University – La Molina (UNALM); ³ Japan Int Res Ctr Agr Sci JIRCAS, Biol Resources & Postharvest Div ⁴ Faculty of Agriculture, Tottori University

P2-10

Siminovitchia fortis GURL-96 and Priestia megaterium GURL-107, promising strains for biocontrol of rubber leaf fall disease

Stephany Angelia Tumewu¹, Masafumi Shimizu¹, Tri Rapani Febbiyanti², Kiki Andayani², Minami Matsui³, Yuichiro Ikagawa¹, Kosei Yamauchi¹

¹ Faculty of Applied Biological Sciences, Gifu University; ² Indonesian Rubber Research Institute; ³ RIKEN Center for Sustainable Resources Science

Poster Sessions

P2-11

Development and evaluation of a new attenuated strain of melon yellow spot virus.

Yoshifumi Shimomoto¹, Kazusa Hayashi¹, Yasuhiro Tomitaka², Momoko Matsuyama², Kanamu Kozakai³, Teruyuki Mametsuka³, Boseong Yang⁴

¹ Kochi Agricultural Research Center: ² Institute for Plant Protection, NARO; ³ Berg Fukushima, Inc.; ⁴ Kyoto Biken Laboratories, Inc.

P2-12

RNAi-Based Pre-Infection Treatment with dsRNA Effectively Suppresses TYLCV Infection in Tomato Plants

Man-Cheol Son^{1,2}, Myeonghwan Kwak^{1,2}, Eui-Joon Kil^{1,2}

Department of Plant Medicals, Gyeongguk National University; ² Agriculture Science and Technology Research Institute, Gyeongguk National University

III: Molecular Mechanisms of Pathogenicity

P3-1

Functional analysis of structurally similar homologues of cell death-inducing proteins secreted by *Colletotrichum higginsianum*.

Toi Sasaki¹, Kenji Ogura¹, Hiroyuki Takahara¹

P3-2

Metabolism between Ceramide and Glucosylceramide in C. orbiculare is involved in morphogenesis and pathogenicity

Hodaka Sano¹, Ayaka Chiba¹, Chikako Tanaka¹, Takumi Nishiuchi², Kazuyuki Kitatani³, Sayo Kodama¹, Yasuyuki Kubo¹ Fac. of Agriculture, Setsunan Univ.; ² Biosci. Core Fac., Kanazawa Univ.; ³ Fac. of Pharmacy, Setsunan Univ.

P3-3

Restoration of pathogenicity in *Colletotrichum orbiculare* Niemann-Pick type C gene mutants by Hydroxypropyl-β-Cyclodextrin

Shun Takezawa¹, Chikako Tanaka¹, Naoki Kato¹, Takumi Nishiuchi², Kazuyuki Kitatani³, Sayo Kodama¹, Yasuyuki Kubo¹

P3-4

Nucleus-Vacuole Junction of Colletotrichum orbiculare is involved in host invasion and pathogenicity

Naoya Saomoto¹, Takumi Nishiuchi², Yasuyuki Kubo¹, Sayo Kodama¹

P3-5

Therapeutic seed screening for human NPC disease using *C. orbiculare*: potential repositioning of the antidepressant imipramine

Haruto Horiguchi¹, Chikako Tanaka¹, Naoki Katou¹, Takumi Nishiuchi², Kazuyuki Kitatani³, Sayo Kodama¹, Yasuyuki Kubo¹

P3-6

Oxysterol binding protein related protein 2 is involved in appressorium morphogenesis and pathogenicity of C. orbiculare

Min Huang

¹ Ishikawa Prefectural University

¹ Fac. of Agriculture, Setsunan Univ.; ² Biosci. Core Fac., Kanazawa Univ.; ³ Fac. of Pharmacy, Setsunan Univ.

¹ Fac. of Agriculture, Setsunan Univ.; ² Biosci. Core Fac., Kanazawa Univ.

¹ Fac. of Agriculture Setsunan Univ.; ² Biosci. Core Facility, Kanazawa Univ.; ³ Fac. of Pharmacy, Setsunan Univ.

¹ Faculty of agriculture, Setsunan University

Poster Sessions

P3-7

Two transcription factors are crucial for host specificity of *Colletotrichum orbiculare* by regulating cucurbit-specific effectors

Ru Zhang

1 Kyoto University

P3-8

A fungal transcription factor BOT6 converts a beneficial root endophyte Colletotrichum tofieldiae into an anthracnose pathogen

Ren Ujimatsu¹, Junya Takino², Seishiro Aoki³, Masami Nakamura¹, Hiromi Haba¹, Atsushi Minami⁴, Kei Hiruma¹ Grad. Sch. Art. Sci., UTokyo; ² Grad. Sch. Sci., Hokkaido Univ.; ³ Grad. Sch. Front. Sci., UTokyo; ⁴ Sch. Sci., Science Tokyo

P3-9

Asynchronous evolution of centromeric sequences across chromosomes in Pyricularia oryzae

Atsumi Morimoto¹, An Thach Dang¹, Kenichi Ikeda¹, Hitoshi Nakayashiki¹

P3-10

Septoria gentianae controls host stomatal development to induce systemic-induced susceptibility in gentian.

Chika Tateda^{1,2}, Mari Iwai³, Kazue Obara³, Yoshiko Abe³, Motoki Shimizu³, Hiromasa Saitho⁴, Akihisa Shinozawa⁴, Masahiro Nishihara^{3,5}, Katsunori Hatakeyama¹, Koki Fujisaki³

P3-11

Starship giant transposons dominate plastic genomic regions in a fungal plant pathogen and drive virulence evolution Yukiyo Sato¹, Roos Bex², Grardy Berg³, Monica Höfte², Michael Seidl⁴, Bart Thomma¹

1 UoC; 2 UGent; 3 WUR; 4 UU

P3-12

Two distantly related polyxenous phytopathogenic fungi exhibit analogous response mechanisms to plant antimicrobial compounds

Akira Ashida¹, Minami Kawashima², Abriel Bulasag¹, Teruhiko Kuroyanagi¹, Makoto Ojika¹, Ikuo Sato¹, Sotaro Chiba¹, Daigo Takemoto¹

¹ Graduate School of Agricultural Science, Faculty of Agriculture Kobe University.

¹ Iwate Univ.; 2 JST PRESTO; 3 IBRC; 4 Tokyo Univ. Agric.; 5 Fukui Pref. Univ.

¹ Grad. Sch. Bioagr. Sci., Nagoya Univ.; ² Sch. Agr. Sci., Nagoya Univ.

Mycoparasitism of Hansfordia pulvinata against tomato leaf mold is regulated by red and far-red light

Eishin Iwao¹, Kazuya Maeda¹, Takuya Sumita², Tomokazu Ushijima¹, Yuichiro Iida¹

P3-14

Transcriptome analysis in the tripartite interaction among tomato, Cladosporium fulvum, and mycoparasite Hansfordia pulvinata.

Kazuya Maeda¹, Hirotoshi Sushida², Takuya Sumita³, Yuichiro Iida¹

¹ Faculty of Agriculture, Setsunan University; ² Institute of Food Research, NARO; ³ School of Environmental Science, The University of Shiga Prefecture

P3-15

Functional analysis of proteins secreted from the mycoparasitic fungus Hansfordia pulvinata

Takumi Kawase¹, Mai Ohara¹, Kazuya Maeda¹, Mariko Kouda¹, Takuya Sumita², Yuichiro Iida¹

P3-16

Infection of mycovirus FbLFV1 and its defective RNA induces hypovirulence by loss of fungal membrane integrity in Fusarium boothii

Vanshika Abbhi¹, Yurisa Sato¹, Yukiyoshi Mizutani¹, Ikuo Sato¹, Daigo Takemoto¹, Haruhisa Suga², Nobuhiro Suzuki³, Sotaro Chiba¹

¹ Graduate School of Bioagricultural Sciences, Nagoya University; ² Institute for Glyco-core Research (iGCORE), Gifu University; ³ Institute of Plant Science and Resources (IPSR), Okayama University

P3-17

Narrowing down the pathogenicity-related chromosomal regions and genes in the tomato wilt fungus using genome editing technology

Masaya Yamazaki¹, Hiroki Saito², Shuta Asai³, Takayuki Arazoe⁴, Takashi Kamakura⁴, Ken Komatsu¹, Tsutomu Arie¹

¹ United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology; ² Institute of Bioresources Engineering, Ishikawa Prefectural University; ³ RIKEN CSRS; ⁴ Faculty of Science and Technology, Tokyo University of Science

P3-18

Functional variations in conidiation-related genes between two pathotypes of Fusarium fujikuroi

Sang-Won Lee1, Sung-Hwan Yun1

Faculty of Agriculture, Setsunan Univ.; ² School of Environmental Science, Univ. of Shiga Prefecture

¹ Faculty of Agriculture, Setsunan University; ² School of Environmental Science, The University of Shiga Prefecture

Dept. of Medical Biotechnology & Medical Science, Soonchunhyang University

Poster Sessions

P3-19

The minimum repertoire of Type III effector required for Pta 6605

Kana Kuroe¹, Takafumi Nishimura¹, Nanami Sakata¹, Yoshiteru Noutoshi¹, Kazuhiro Toyoda¹, Yuki Ichinose¹, Hidenori Matsui¹

P3-20

Function in virulence of Pseudomonas syringae pv. tabaci 6605 genomic island-1 and -2 (PtaGI-1 and PtaGI-2)

Yuta Watanabe¹, Kotomi Kunishi², Nanami Sakata^{1,2}, Hidenori Matsui^{1,2}, Yoshiteru Noutoshi^{1,2}, Kazuhiro Toyoda^{1,2}, Yuki Ichinose^{1,2}

¹ Graduate School of Environmental, Life, Natural Science and Technology, Okayama University; ² Faculty of Agriculture, Okayama University

P3-21

Development of reliable inoculation methods for studying Xanthomonas arboricola pv. pruni virulence in peach

Nanami Sakata¹, Takafumi Mukaihara², Chisato Kami², Yoshiteru Noutoshi¹, Kazuhiro Toyoda¹, Hidenori Matsui¹,

Yuki Ichinose¹

P3-22

Comparative genome analysis uncovers the functions of fleQ and gdpA in Pseudomonas syringae pv. tabaci 6605 virulence

Muhammad Taufiq Hidayat¹, Kei Yoshioka¹, Takafumi Nishimura¹, Shuta Asai², Nanami Sakata¹, Yoshiteru Noutoshi¹, Kazuhiro Toyoda¹, Yuki Ichinose¹, Hidenori Matsui¹

¹ Graduate School of Environmental, Life, Natural Science and Technology, Okayama University; ² Center for Sustainable Resource Science, RIKEN

P3-23

Formate chemoreceptor and its role in motility and virulence in *Pseudomonas syringae* pv. *tabaci* 6605

Phuoc Quy Thang Nguyen¹, Yuta Watanabe¹, Hidenori Mastui¹, Nanami Sakata¹, Yoshiteru Noutoshi¹, Kazuhiro Toyoda¹, Yuki Ichinose¹

¹ Okayama Univ.

¹ Okayama Univ.; 2 RIBS

¹ The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University

Characterization *Pseudomonas syringae* pv. tabaci 6605 genomic island-1 by introducing it into *P. syringae* pv. tomato DC3000

Norika Fujisawa¹, Yuta Watanabe¹, Hidenori Matsui¹, Nanami Sakata¹, yoshiteru Noutoshi¹, kazuhiro Toyoda¹, Yuki Ichinose¹

P3-25

Deletion of lipopolysaccharide biosynthesis genes reduces drug resistance, motility, and virulence in *Pantoea ananatis*Yuta Isobe¹, Luna Kanatsu¹, Kenji Ueda¹, Keita Fukui², Yoshihiko Hara², Yuichi Takikawa³, Kenro Oshima¹

Hosei CPS; ² AJINOMOTO; ³ Shizuoka Univ

P3-26

A study on metabolites by the growth stage period of Korea cabbage and the interaction between virulence of cabbage soft rot

Su Hyeon Han1, Ho Song Ji1, Min A Son1, Yun Ju Lee1, Hyun Gi Kong1

P3-27

A study on the metabolites by the growth stage of Korean cabbage and the interaction between virulence of cabbage black rot

Min A Son1, Yun Ju Lee1, Ji Ho Song1, Su Hyeon Han1, Hyun Gi Kong1

P3-28

Functional analyses of novel two-component signal transduction system-related proteins in Xanthomonas oryzae pv. oryzae.

Shiori Nakao¹, Miyuki Minami¹, Yumi Ikawa¹, Seiji Tsuge¹

P3-29

Estimation of race 4-specific pathogenicity related genes based on comparative genome analysis of *Ralstonia* pseudosolanacearum

Kazuhiro liyama¹, Monami Takehara¹, Runa Yamaguchi¹, Kenichi Tsuchiya¹, Mitsuo Horita², Naruto Furuya¹

¹ Faculty of Agriculture, Kyushu University; ² Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO)

Graduate School of Environmental, Life, Natural Science and Technology, Okayama University

Department of plant medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University

Department of plant medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University

¹ Kyoto Pref. Univ.

Involvement of the race 4-specific polygalacturonase gene pehD in the virulence of Ralstonia pseudosolanacearum

Ryuma Fuchiwaki¹, Natsuki Juukurogi², Monami Takehara¹, Runa Yamaguchi¹, Kazuhiro Iiyama¹, Kenichi Tsuchiya¹, Mitsuo Horita³, Naruto Furuva¹

P3-31

Recognition mechanism of hrp-inducing plant signals by Ralstonia pseudosolanacearum

Kouhei Ohnishi¹, Yuzhu Cao², Masayuki Tsuzuki¹, Akinori Kiba¹, Yasufumi Hikichi¹

P3-32

Two paralogous Fur proteins have distinct iron-dependent gene regulatory functions in *Ralstonia* pseudosolanacearum strain OE1-1

Sora Tateda¹, Tatsuya Ueyama¹, Akinori Kiba¹, Kouhei Ohnishi¹, Yasufumi Hikichi¹, Masayuki Tsuzuki¹ Fac. Agric. and Mar. Sci., Kochi Univ.

P3-33

A novel AcrR-type transcriptional regulator RSp0599 negatively regulates virulence of *Ralstonia* pseudosolanacearum strain OE1-1

Tatsuya Ueyama¹, Sora Tateda¹, Akinori Kiba¹, Kouhei Ohnishi¹, Yasufumi Hikichi¹, Masayuki Tsuzuki¹ Fac. of Agric. and Mar. Sci., Kochi Univ.

P3-34

Possible Role of the Ralstonia pseudosolanacearum Effector Clone100 in planta

Yutaro Ikemura¹, Mayu Takakusu¹, Yuki Tsuchiya¹, Miki Edaki¹, Masato Kitamura¹, Yoshito Taguchi¹, Hirofumi Yoshioka², Susumu Mochizuki¹, Kazuya Akimitsu¹, Kazuya Ichimura¹

P3-35

Effects of calcium ions and viral RNA silencing suppressors on jasmonic acid and salicylic acid induced genes

Kenzie Sachisiva Anindita¹, Eun Jin Jeon¹, Masanao Sato¹, Kenji Nakahara¹

¹ Kyushu univ.; 2 TOTO Ltd; 3 NARO

¹ Kochi Univ.; ² Ehime Univ.

¹ Facult. Agri., Kagawa Univ; ² Grad. Sch. Bioagri. Sci., Nagoya Univ

¹ Graduate School of Agriculture, Hokkaido University

Systemic infectivity of Plantago asiatica mosaic virus (PIAMV) Viola isolate and its mutant in Arabidopsis natural accessions

Nami Minato^{1,2}, Daisuke Nakamura¹, Masaaki Moridaira², Ken Komatsu³, Shin-ichi Fuji⁴

¹ Graduate School of Science and Technology, Niigata University; ² Faculty of Agriculture, Niigata University; ³ Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT); ⁴ Faculty of Bioresource Science, Akita Prefectural University

P3-37

Co-option of host V-ATPase and autophagy pathways for the replication of a plant RNA virus

Kiwamu Hyodo¹, Ku Sudo¹, Hideki Kondo¹, Nobuhiro Suzuki¹

¹ Institute of Plant Science and Resources, Okayama University

IV: Molecular Mechanisms of Resistance

P4-1

A trehalase-derived MAMP triggers LecRK-V-mediated immune responses in Arabidopsis

Erika Iino^{1,2}, Yasuhiro Kadota¹, Noriko Maki¹, Erika Ono¹, Kazuki Sato¹, Nobuaki Ishihama¹,

Bruno Pok Man Ngou¹, Marc W Schmid³, Takamasa Suzuki⁴, Taketo Uehara⁵, Ken Shirasu^{1,2}

¹ RIKEN CSRS; ² Graduate school of Science, The University of Tokyo; ³ MW Schmid GmbH; ⁴ Chubu University;

P4-2

Structure determination of the extracellular region of CARD1/HPCA1 by cryo-EM

Nobuaki Ishihama¹, Yohta Fukuda², Yumiko Shirano³, Kaori Takizawa¹, Ryoko Hiroyama¹, Kazuhiro Fujimoto³, Hiroki Ito⁴, Mayumi Nishimura⁴, Takeshi Yanai³, Tsuyoshi Inoue², Anuphon Laohavisit³, Ken Shirasu¹

¹ RIKEN CSRS; ² Grad Sch Pharma Sci, Osaka Univ; ³ WPI-ITbM, Nagoya Univ; ⁴ THERS Technical Center, Nagoya Univ

P4-3

Exploring LRR-Type Immune Receptors Recognizing Pathogen-Derived Molecules in Non-Model Plants

Erika Ono¹, Bruno Pok Man Ngou¹, Michele Wyler², Marc W Schmid², Yasuhiro Kadota¹, Ken Shirasu^{1,3}

P4-4

Search for glycosyltransferase enzymes in Arabidopsis thaliana that use N-hydroxypipecolic acid as a substrate

Jiyuan Bao¹, Taiga Uchiyama¹, Kazuki Kusunoki¹, Yuka Shinohara¹, Yurika Tanigawa², Megumi Watanabe¹, Nanami Sakata^{1,2}, Hidenori Matsui^{1,2}, Yuki Ichinose^{1,2}, Kazuhiro Toyoda^{1,2}, Nobuaki Ishihama³, Ken Shirasu³, Yoshiteru Noutoshi^{1,2}

¹ Graduate School of Environmental, Life, Natural Science and Technology, Okayama Univ.; ² Faculty of Agriculture, Okayama Univ.; ³ RIKEN CSRS

P4-5

Characterization of JAZ family proteins based on degradation monitoring by using a bioluminescence reporter system

Harukazu Koyama¹, Hiromi Nakai¹, Hirotaka Ishida¹, Rieko Ogura², Kazuyuki Hiratsuka¹ YNU; ² YBT

⁵ National Agriculture and Food Research Organization

¹ RIKEN CSRS; ² MWSchmid GmbH; ³ Grad. Sch. of Sci., The Univ. of Tokyo

P4-6

Calcium-dependent protein kinases regulate ROS production downstream of helper NLR.

Yuta Hino¹, Mitsuhiro Yada¹, Miki Yoshioka¹, Hiroaki Adachi^{2,3}, Hirofumi Yoshioka¹

¹ Grad. Sch. Bioagr. Sci., Nagoya Univ.; ² Grad. Sch. Agri., Kyoto Univ.; ³ JST PRESTO

P4-7

Synergistic effects of rice OsRLCK and OsCDPK on ROS burst via phosphorylation of OsRBOHI.

Miki Yoshioka¹, Koji Yamaguchi², Satomi Yoshimura², Masayuki Fujiwara³, Takaki Yamauchi¹, Mikio Nakazono¹, Tsutomu Kawasaki², Hirofumi Yoshioka¹

¹ Grad. Sch. of Bioagricultural Sciences, Nagoya Univ.; ² Grad. Sch. of Agriculture, Kinki Univ.; ³ YANMAR HOLDINGS Co. Ltd.

P4-8

Identification and characterization of CmCERK1 required for chitin-triggered ROS generation in melon Chun Yu Suen¹

¹ Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University

P4-9

Functional evaluation of plant-derived extracellular vesicles according to different infection strategies of pathogenic fungi

Ryoichiro Fukuhara¹, Naomi Konishi¹, Hideki Nishimura¹, Natsuko Ono¹, Yoji Kawano¹, Fumi Fukada¹

¹ Okayama Univ. IPSR

P4-10

Induced systemic resistance triggered by *Trichoderma* primarily independent of the chitin-mediated signaling pathway in Arabidopsis

Ayae Sakai¹, Hisako Yamagata¹, Keigo Naito¹, Mai Yoshioka², Takaya Tominaga³, Shinsuke Ifuku^{4,5}, Hironori Kaminaka² Dept. Agr. Sci., Grad. Sch. Sust. Sci., Tottori Univ.; ² Fac. Agr., Tottori Univ.; ³ United Grad. Sch. Agr.; ⁴ Grad. Schl. Eng., Tottori Univ.; ⁵ RISH, Kyoto Univ.

P4-11

Single-cell analysis of HR cell death using a laser-assisted thermal-expansion microinjection technique

Masaya Okahisa¹, Shoya Ogawa¹, Kappei Kobayashi¹, Yu Ayukawa¹, Takashi Yaeno¹

Fac. Agri. Ehime University

P4-12

Understanding the loss of function of SMN1/RPS6 in smn2/hen2 mutant by a reverse genetic approach

Kanako Segoshi¹, Erika Kawando², Suzuna Nagai², Momoko Takagi³, Susumu Mochizuki², Ken Shirasu⁴, Kazuya Ichimura²

P4-13

Enzymatic characterization of rice OsG6PDH1 involved in reactive oxygen species accumulation

Keishi Wada¹, Kana Hagihara¹, Shunsuke Ura¹, Aya Asai¹, Natsuki Ohtani¹, Ayaka Aki¹, Akihito Kano¹, Takeshi Fukumoto¹, Ken Izumori^{1,2}, Akihide Yoshihara^{1,2}, Hiromi Yoshida^{2,3}, Kazuya Ichimura^{1,2}, Kazuya Akimitsu^{1,2}, Susumu Mochizuki^{1,2}

P4-14

A role of rice sugar transporters OsMST and OsSWEET in rare sugar effects

Yuna Matsuoka¹, Maho Takezaki¹, Saki Ejima¹, Akihito Kano¹, Ken Izumori¹, Susumu Mochizuki¹, Kazuyo Kamitori², Kazuya Ichimura¹, Kenji Gomi¹, Kazuya Akimitsu¹

P4-15

Arabidopsis MTK1 regulates JAZ5 and JAZ10 via MTK5 and MTK7 to activate resistance against Pseudomonas syringae pv. tomato DC3000

Kazuma Sugimoto¹, Keishi Yamanaka¹, Mitsuo Shintani¹, Kohei Yokota¹, Masaya Nagata¹, Misato Matsumura¹, Masako Nakamura¹, Kaori Takizawa², Naoto Kawakami⁴, Daisuke Matsuoka³, Kazuo Shinozaki², Ken Shirasu², Susumu Mochizuki¹, Kazuya Akimitsu¹, Kazuya Ichimura¹

P4-16

An Investigation on the Resistance of Antibiotics to Cabbage Soft Rot

Yun Ju Lee¹, Ji Ho Song¹, Min A Son¹, Suh Yeon Han¹, Hyun Gi Kong¹

¹ Facult, Sch. Agri., Kagawa Univ; ² Grad, Sch. Agri., Kagawa Univ; ³ Grad, Sch. Arts and Sci., Tokyo Univ; ⁴ RIKEN CSRS

¹ Faculty of Agriculture, Kagawa University; ² International Institute of Rare Sugar Research and Education, Kagawa University; ³ Faculty of Medicine, Kagawa University

¹ Kagawa Univ., Fac. of Agr.; 2 Kagawa Univ., Fac. of Med.

¹ Facult. Sch. Agri., Kagawa Univ.; ² RIKEN CSRS; ³ Grad. Sch. Agri. Sci, Kobe Univ.; ⁴ Facult. Agri., Meiji Univ.

Department of plant medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University

P4-17

Characterization of the esterase activity of HSR203J associated with salicylic acid biosynthesis

Momoho Osada¹, Shinpei Katou¹

P4-18

Comparative analysis of five strains of *Pseudomonas amygdali* pv. tabaci about their virulence on *Nicotiana* benthamiana

Yuna Nakao1, Shinpei Katou1

P4-19

Functional analysis of the paralogs of CNL and CHD associated with salicylic acid biosynthesis

Kazumi Murata¹, Momoho Osada², Kosuke Tasaki², Shinpei Katou^{1,2}

P4-20

Suppression of movement of Ralstonia pseudosolanacearum race 4 in mango ginger leaves

Moka Imai¹, Ryota Sakai¹, Kazuhiro Iiyama¹, Kenichi Tsuchiya¹, Mitsuo Horita², Naruto Furuya¹

P4-21

Analysis of Immunoregulatory Roles of CBP60g and SARD1 in Tobacco Plants Harboring N' Resistance Gene

Houssam Eddine Said Bensedira¹, Okon Odiong Unung¹, Yuta Shinomura², Honoka Matsuzaki², Takashi Yaeno^{1,2},

Hidetaka Kaya^{1,2}, Kappei Kobayashi^{1,2}

P4-22

Overexpression of MDP92 encoding MYB transcription factor negatively regulates N-mediated resistance to tobamovirus infection

Munehisa Yoshikawa¹, Yasuhiko Matsushita^{1,2,3}, Nobumitsu Sasaki^{1,2}

¹ Graduate school of science and technology, Shinshu Univ.

¹ Graduate school of medicine, science and technology, Shinshu University

¹ Grad School of Medicine, Science and Technology, Shinshu Univ.; ² Grad School of Science and Technology, Shinshu Univ.

¹ Kyushu Univ; 2 NARO

¹ UGAS, Ehime Univ; 2 Faculty of Agriculture Ehime Univ

¹ United sch. of Agri., Tokyo Univ. of Agri. and Tech.; ² Inst. of Agri., Tokyo Univ. of Agri. and Tech.; ³ Gene research center, Tokyo Univ. of Agri. and Tech.

V: Others

P5-1

Plant growth promotion via syntrophic interactions between TCH3-2 and Synthetic community members

Hyojun Seo¹, Ju Hui Kim¹, Kantika Nopphakhun¹, Sang-Moo Lee², Jae Hyeon Noh¹, Seon-Woo Lee^{1,2}

P5-2

Flavobacterium dauae TCH3-2, with a synthetic community, upregulates phytosterol-related genes and promotes plant growth.

Ju Hui Kim¹, Sang-Moo Lee², Hyun-Hee Lee³, So Eon Kim¹, Jungwook Park³, Young-Su Seo³, Seon-Woo Lee^{1,2}

P5-3

STT3A is required for pathogen-derived sphingolipid recognition in Arabidopsis thaliana.

Seowon Choi¹, Motoki Shimizu², Akira Abe², Nobuaki Ishihama³, Yuko Ishikawa¹, Daigo Takemoto⁴, Ken Shirasu³, Yoshitaka Takano¹, Ryohei Terauchi^{1,2}, Hiroaki Kato¹

P5-4

Study of rice phosphoglucomutase for phosphorylated rare sugar utilization

Haru Terao¹, Maho Takezaki¹, Saki Ejima¹, Yusei Shimamura¹, Akihito Kano¹, Takeshi Fukumoto¹, Akihede Yoshihara¹, Ken Izumori¹, Kenji Gomi¹, Kazuya Ichimura¹, Susumu Mochizuki¹, Kazuya Akimitsu¹

P5-5

Attempt to generate banana/plantain resistant to Fusarium oxysporum f. sp. cubense by irradiation-induced mutagenesis

Nobumitsu Sasaki¹, Rosa Cabrera-Pintado², Sakura Takahashi¹, Jingai Che¹, Sakae Suzuki¹, Toshiyuki Fukuhara¹, Tomoko Abe³, Dina Gutiérrez-Reynoso², Lilliana Aragón-Caballero⁴, Tsutomu Arie¹

P5-6

Development of a simple method for horizontal chromosome transfer in Fusarium oxysporum

Yu Ayukawa¹, Nanami Misawa², Takashi Yaeno¹

¹ Department of Applied Bioscience, Dong-A University; ² Institute of Agricultural Life Science, Dong-A University

Department of Applied Bioscience, Dong-A University; ² Institute of Agricultural Life Science, Dong-A University;

³ Department of Systems Plant Microbiology, Pusan National University

¹ Kyoto University; ² IBRC; ³ RIKEN; ⁴ Nagoya University

¹ Kagawa Univ., Fac. of Agr.

¹ TUAT; 2 INIA; 3 RIKEN; 4 UNALM

¹ Graduate School of Agriculture, Ehime University; ² Department of Food Production Science, Ehime University

P5-7

Pathogenicity differentiation of Fusarium spp. causing Fusarium basal rot and wilt disease in Allium spp.

Kosei Sakane¹, Shin-ichi Ito², Kazunori Sasaki²

¹ Ishikawa prefectural university; ² Yamaguchi University

P5-8

Hyperspectral assessment of interaction of Heterodera trifolii and Verticillium dahliae on Kimchi cabbage

Sekeun Park¹, Byeong-Yong Park¹, Hyoung-Rai Ko¹, Natesan Karthi¹, Sohee Park¹, Eunhwa Kim¹

National Institute of Agricultural Sciences

P5-9

Identification and pathogenicity of Colletotrichum spp. isolated from diseased pepper fruits

Sohyeon An1, Aeoyeon Lee1, Yongjin Cho1, Jiwoo Jeong1, Heungtae Kim1

¹ Chungbuk National University

P5-10

Analysis of the infection pattern of Lasiodiplodia sp. on the clonal plant Japanese knotweed

Miki Nakano¹, Jun-ichiro Suzuki¹, Toshiko Furukawa¹

¹ Biological Sciences, Graduate School of Science, Tokyo Metropolitan University

P5-11

Unraveling the Foliar Disease Affecting Bamboo (Bambusa vulgaris) in Laguna, Philippines

Mary Joy Lapitan¹, Julie Ann Matalog¹, Roberto Geli¹, Regine Candano¹

¹ National Crop Protection Center, College of Agriculture and Food Science, University of the Philippines Los Baños

P5-12

The distribution and antimicrobial susceptibility of the pathogenic bacteria of onion rot in Japan

Mizue Tsuji¹, Shin-ichi Fuji², Hiroshi Yokota³, Hatsumi Kumagai³, Yutaka Iwamoto⁴, Shinji Nishiguchi⁴, Youichi Ide⁵, Akiko Furuta⁵, Hayashi Satoshi⁶, Ikuo Kadota⁷

¹ Tohoku Agricultural Research Center, National Agriculture and Food Research Organization (TARC, NARO); ² Akita Prefectural University (APU); ³ Iwate Agricultural Research Center (IARC); ⁴ Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries (HTCAFF); ⁵ Saga Agricultural Research Center (SARC); ⁶ Rakuno Gakuen University (RGU); ⁷ Japan Plant Protection Association (JPPA)

P5-13

Genomic and Virulence Analysis of Heart Rot Bacteria: First Report of *Dickeya oryzae* Infecting Pineapple in the Philippines

Signabon Freddiewebb 1.2, Encabo Jaymee3, Takemoto Daigo4, Sato Ikuo4, Chiba Sotaru 2.4

- National Crop Protection Center, College of Agriculture and Food Science, University of the Philippines Los Baños;
- ² Nagoya University Asian Satellite Campuses Institute Philippine Campus, University of the Philippines Los Baños:
- ³ Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños; ⁴ Graduate School of Bioagricultural Sciences, Nagoya University

P5-14

Two novel phages with a broad host range demonstrate the diversity of *Pectobacterium* spp. causing wasabi soft rot Kanata Kuwahara¹, Noi Inamoto¹, Sayuri Uematsu², Ryota Moriuchi³, Hideo Dohra^{2,3}, Masayoshi Hashimoto^{1,2}, Yuichi Takikawa¹, Shinji Tsuyumu¹, Hisae Hirata^{1,2}

¹ Fac. of Agri, Shizuoka Univ.; ² Grad. Sch. of Integ. Sci. and Tech., Shizuoka Univ.; ³ Shizuoka Inst. Anal. Ctr., Shizuoka Univ.

P5-15

Incidence and distribution of 14 plant viruses managed in agricultural fields of Korea in 2020-2024

Bong Choon Lee¹, Hae-Ryun Kwak¹, Hee-Seong Byun¹, Jong-Yoon Choi², Moon Jong Kim³, Eunsol Yeon⁴, Hyun Sook Kim⁵, Deok-Ryeol Lee⁶, Hyo-Jeong Kim⁷, Won-Kown Jung⁸, Dong-Wan Kang⁹, Hyo-Jeong Kim¹⁰

¹ Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, ² Gyeonggi-do Agricultural Research and Extension Services (ARES), ³ Gangwon-do ARES, ⁴ Chungcheongbuk-do ARES, ⁵ Chungcheongnam-do ARES, Yesan, Republic of Korea; ⁶ Jeollabuk-do ARES, Iksan, ⁷ Jeollanam-do ARES, Naju, Republic of Korea; ⁸ Gyeongsangbuk-do ARES, ⁹ Gyeongsangnam-do ARES, ¹⁰ Jeju-do ARES

P5-16

Evidence for the replication of a bipartite plant rhabdovirus in its arthropod mite

Hideki Kondo¹, Kiwamu Hyodo¹, Nobuhiro Suzuki¹

1 IPSR, Okayama Univ.

P5-17

Development of anaerobic soil disinfestation method against foot rot disease of sweet potato in seedbeds

Koji Nomiyama¹, Kirara Saito², Yusuke Arakawa², Hiroshi Kajisa^{3,5}, Akinori Hirata³, Yasushi Yoshimoto³, Akira Wada⁴, Shigenobu Yoshida¹

¹ Institute for Plant Protection, NARO; ² Kyushu Okinawa Agricultural Research Center, NARO; ³ SUNUS Co., Ltd.;

4 SANWA Co., Ltd.; 5 SUMMIT AGRI-BUSINESS CORPORATION

P5-18

Rapid detection of cucumber green mottle mosaic virus using RT-MIRA combined with lateral flow strip assay Bong Geun Oh¹, Ji Yeong Bang², Ju-Yeon Yoon^{2,3}, Ho-Jong Ju^{1,2}

¹ Department of Agricultural Biology, Jeonbuk National University; ² Department of Plant protection and Quarantine, Jeonbuk National University; ³ Department of Agricultural Convergence Technology, Jeonbuk National University

P5-19

Climate-Based Metadata Analysis for Crop Damage and Disease Correlation

Ji Ho Song¹, Min A Son¹, Yun Ju Lee¹, Suh Yeon Han¹, Hyun Gi Kong¹

P5-20

'Database of Plant Diseases in Japan' in the Genebank project

Mamoru Satou¹, Tamaki Uehara-Ichiki¹, Shihomi Uzuhashi¹, Yusuke Takashima¹, Fukuhiro Yamasaki¹

¹ Research Center of Genetic Resources, National Agriculture and Food Research Organization

P5-21

Fire blight management system in Korea

Yong Hwan Lee1 and Hyeonheui Ham1

Plant disease Division, National Institute of Agricultural Science, Rural Development Administration

¹ Department of plant medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University

<u>Acknowledgement</u>

This symposium is supported by the Takamatsu Convention and Visitors Bureau and the Kagawa Prefecture.